
On the Stability of Parabolic Difference Schemes 

By Olof B. Widlund 

1. Introduction. Consider a differential operator of order 2m 

P(x, a) C E A,(x)a1v1 ... 9s 
I P ? : 2m 

where v = (vl, * , v8), 1 v v ir and a, = a/ax1 . A,(x) are complex valued, 
uniformly bounded n X n matrices depending on x = (xi, , x8), -co < 
xi < co, in a real vector space R1? . I-a/at - P(x, a ), where I is the identity matrix, 
is said to be uniformly parabolic if there exists a constant a > 0 such that all roots 
a of 

( 1.1 ) det 4 X A (x) (iwl )* (iwx) - _ Ib =O 
1 12m) 

satisfy 

(1.2) Re a;, < -6 

for all x C R8 and all I Xi = 1.1 Here w E R8 is a dual variable. 
In this paper we shall study the stability of difference approximations to the 

initial value problem: 

au3/at = P(x,a )u, O < t < T < oo, 

u(x, 0) = f(x), 

where u(x, t) = (u (x, t), * , un(x, t))' is a sufficiently smooth vector which for 
each fixed value of t belongs to a complex Hilbert space So with an inner product 
and a norm defined by 

(u, V) = u* v dx, 

11 u 1102 = (u, )U)O 

In the following we shall always suppose that (1.3) is a properly posed initial 
value problem in the sense of Richtmyer [17],2 and only engage in the study of sta- 
bility conditions for difference approximations. The existence, uniqueness, etc., of 
solutions of parabolic systems of differential equations have been studied by, among 
others, Aronson [1], [2], tlidel'man [4], [5], [6] and Mizohata [15], [16]. We refer the 
reader to these papers for such questions. 

Received July 6, 1964. 
1 By y' and y* we denote the transpose and the conjugate transpose of a vector y. Similar 

notations hold for a matrix A. By I y I and I A I = supl,1_1 I Ay I we denote the euclidean norm 
of y and A. 

2 For the basic theory on difference approximations to initial value problems we refer the 
reader to this book. 
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The difference schemes to be studied are of the multistep type: 
r r 

u(X, (n + 1)k, h) = >,2au(x, (n- )k, h) + Z Q,,(x, D, h)u(x, (nr-j.&)k, h), 
(1.4) jA- IO- 

r ? n ? T/k - 1; T/k = integer. 

We suppose that u(x, vk, h) are given for v = 0, 1, r , r-1, and that u(x, 0, h) 
f(x) where f(x) is defined in (1.3). aA are real constants. k is the time step which 

is connected with the space width h by an equation k = Xh2', X = constant > 0. 
Q,(x, D, h) are polynomials.in the variables h, hDo0(h) and hDij(h) with uniformly 
bounded matrix coefficients. The terms of these polynomials can be written 
B,,"(x)h'(hD)T with o- + r _ 2m. Here (hD)r = (hD) ..* (hD), where each hD 
stands for one of the operators hDo0(h), hD+j(h), hD-j(h). These difference opera- 
tors are defined by 

2hDoj(h)u(x) = u(x + hej) - u(x - he,), 

hD?j(h)u(x) = i(u(x i hey) -u(x)), 

where ej is the unit vector in the direction of the jth coordinate axis. The elements of 
B,,7(x) are supposed to have sufficiently many uniformly bounded derivatives. The 
sum of the terms for which a = 0 and r = 2m are denoted Q,(l) (x, D, h), respec- 
tively. 

Following Richtmyer [17] we introduce a new inner product space Sr . The ele- 
ments of Sr are (r + 1)-component vectors, whose components are elements in 
So. The inner product and the norm are defined by 

r 
(U V)r- (Ui X Vi)oX 

i-O 

( 2 
= (j ii)r 

U= (uoU1, - Ur 

e= (vo,v, * *, Vr)', ui e SO, vi E 0 X 0,i1, *O * -, r. 

We shall always suppose that (I - Q1 (x, D, h) )-' and (I - Q.1'(xo, D, h) )-, 
xo E R8, exist and that they are defined for all u E So. We also suppose that these 
operators are uniformly bounded, that is, the bound for 11 (I- Q-(x, D, h) )-' 110 
is independent of h and the bound for 11 (I - Ql(xo, D, h) )-1 lo is independent of 
xo and h. We are then able to transform (1.4) into an explicit one-step formula: 

fi(x, (n + 1)k, h) - fi(x, nk, h), 

(I - Q1) -I(ao I + Qo) ......... * (I -Q-1 ) l(ar I + Qr) 

(1.6) .= 0 +Q00)) 

O O .. I O 

ii(x, nk, h) = (u(x, nk, h), . , u(x, (n - r)k, h))'. 

As in the case of differential equations mnany properties of difference schemes are 
stated in terms of characteristic matrices. We therefore, denoting by 
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= w3h, j = 1, , , 

define the matrices Q,(x, (, h), Qm 1(x, (, h) and Q(x, #, h) which are constructed by 
exchanging hDoj(h) and hD?j(h) for i-sini (j and 2i.sin(1/2)%j.e'i(l/2)"i, respec- 
tively, in Q,(x, D, h), Q,(1) (x, D, h) and Q(x, D, h). In the case when Q, do not 
depend on x this anmounts to the same thing as taking the Fourier transforms for 

(hDoj(h)f(x)) sin =j f, 

(hD?j(h )f(x) )A = 2i sin(1/2%.e eA(1/2)ti J, 

f = Fourier transform of f(x). 

It follows immediately that Q,., Q,j1) and Q are 2ir-periodic matrix-valued func- 
tions of $j , j = 1, , s. Observe especially that Qj) depend only, on t and x and 
that 6 = 0(f 12m)) 

We write Q as the sum of three matrices: 
= ~(O) +(I) + -(2) 

Q =Q(0 + Q( Q 

where 

ao al a)r-1 a 
Q(0)= 0 ... 0 0| 

0 0 **..... 0 

and 

/( - '))'(aoI + 0o0)) ..... (I - -( ))-'(arI + Q (') 

((I 
- 

Q.iQ .Q1.I Q(0) + Q(1) = I ...... 
\ ~ ~ ~~ O....I O 

Observe that the existence of (I _- "'l) )- follows from the existence of (I- ) 
the fact that QMl1) depends on t and x only and the fact that Q_ - _ = 0(h). 

We also introduce the (r + 1) X (r + 1) matrix 

ato al ... a g ?r 

(1.7) (ao1 
0 . 0 0. 

O O .... 1 0 

The stability conditions of this paper are stated in terms of Ki, Kj I < 

K 1 ' i < j < (r + 1)n, the eigenvalues of 0(0) + Q(1) and , - 
1 < i <j < r + 1, the eigenvalues of a. This is very convenient from a practical 
point of view. Observe that Ki can be calculated as t,he roots of 

(1.8) det {I r+(I - !)Y) - K r(aoI + Qo ) - (arl + Qr 0 

Following Richtmyer [17] we define: 
Definition 1. (1.4) is a consistent difference approximation to (1.3) if for all 

sufficiently smooth solutions u(x, t) to (l.d/dt - P(x, &))u = 0: 
r 

QI-lQ~)u(x, t + k) - aI+ Q,.)u(x, t - Atk) =o(k). 
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Using Taylor's theorem we immediately obtain that if (1.4) is a consistent dif- 
ference approximation: 

r 

(1.9) a,= 1, 
js0 

r 

(1.10) 1 + E 2Mi)kP(x, a) = 2 Q1 + o(k). 

Because of the fact that various stability definitions are used in the literature, 
we here give two definitions. 

Definition 2. (1.6) is a stable difference scheme if there exists a constant Ct 
independent of h such that for all -r E Sr 

(1.11) 11 Mn lir ?5 Cill Ur llr 

for all n < T/k, Um- = (u(x, mk, h), * , u(x, (m - r)k, h))'. 
Definition 3. (1.6) is a strongly stable difference scheme if there exists a constant 

C2, independent of h, and a norm jj * ieq, equivalent to jj lr such that 

(1.12) I uin+1 lieq g (1 + C2k)ll in lieq 

for all n < T/k. 
(1.12) is easily seen to be a condition of at least the same strength as (1.11). 

The significance of strong stability is thoroughly discussed in a paper by Kreiss 
[12]. 

In analogy to (1.1) and (1.2) we define: 
Definition 4. (1.6) is a parabolic difference scheme if there exists a constant 

0i > P such that for all I tj I I 7r and all x E R8 

(1.13) jKij ? 1-6llI2m, i- 1, *.j,(r+1)n. 

Remark. If we choose ao= 1 al = a2 = ar = O and 

Qo = X E A,(x)h2m.Iv (hDoj(h))`1 * *(hDo(h) 
I vI 2m 

Q= , ,u > 1 Q_i = 0, 

we get, as is easily verified using (1.2), a consistent parabolic difference approxima- 
tion to (1.3) provided X is chosen sufficiently small. This shows that there always 
exists a consistent parabolic difference scheme to each uniformly parabolic differen- 
tial operator. 

We are now able to state our results. 
THEOREM 1. Let (1.4) be a consistent difference approximation to (1.3). Under 

the assumptions 
(a) I aict - P (x, d) is uniformly parabolic, 
(b) the eigenvalues 'yi, i = 2, * - *, r + 1, lie in the interior of the unit circle, 
(c) for every t # 0, all eigenvalues Ki of Q(O) + Q(l) lie in the interior of the unit 

circle, 
the difference scheme is parabolic. 

THEOREM 2. Suppose that (1.6) is a parabolic difference scheme and that all 
eigenvalues y; of a, with modulus = 1 are simple. Then it is strongly stable. 
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Observe that in Theorem 2 we are able to weaken the conditions ony compared 
with those in Theorem 1. 

In Section 2 we prove Theorem 1. In Section 3 we prove, using results by Kreiss 
[12], [13], a fundamental inequality, which essentially corresponds to Theorem 2 
in the case when Q has constant coefficients. In Section 4 we construct a new norm 
-and state some lemmas. Using the results of Section 3 and Section 4 we are able to 
give a proof of Theorem 2 in Section 5. Here we make use of a well-known device 
due to Garding [7]. 

For convenience we only treat homogeneous equations with coefficients inde- 
pendent of t. The extension of the results of this paper to the general case, however, 
presents no new difficulties. 

The techniques used in this paper are closely related to those used by Lax and 
Wendroff [14] and Kreiss [10]-[13]. A slightly different approach to difference 
approximations to parabolic differential equations is found in papers by John [9] 
and Aronson [3]. Using a similar type of condition as we do, John [9], working with 
a maximum norm, proved the stability of difference approximations to a single 
second order parabolic differential equation. 

I am very grateful to Heinz-Otto Kreiss who proposed this problem to me and 
who guided my work. He also gave me the opportunity to read the manuscript of 
the paper by P. D. Lax and B. Wendroff mentioned above, which the authors had 
kindly put at his disposal. I also want to thank Lars Hormander for a clarifying 
,discussion on G?rding's [7] device. 

2. Proof of Theorem 1. First observe that because of (c) we only have to con- 
sider a small neighborhood of t = 0. Using (b) and (1.9) we see that yj = 1. Since 
the eigenvalues depend continuously on the matrix, (b) also tells us that we only 
have to study the eigenvalues Kj(t) close to y- = 1. Put v- K - 1. Using (1.9) 
we get from (1.8): 

(2.1 ) det{4X7{1 + ZQx;,z) _ + (I I r2m) + O(12) 0. 

(1.4) is a consistent approximation to (1.3). This easily establishes 

(2.2) (i + E ta)XE A,(x)(itj)v' ... (its)` = (1) + o(j 12m 
,u=O I ̂ P=2m, 

Substitute (2.2) into (2.1). Using (1.1) and (1.2) we are able to prove (1.13) at 
once. 

3. A Fundamental Inequality. The purpose of this section is to establish the 
following lemma. 

LEMMA 1. Suppose that the assumptions of Theorem 2 hold. Then, for each xo E R8, 

there exists a norm !1H(,) equivalent to 11 !Ir such that, for all u E Sr 

(3.1) u112 
| (Q(O) + (r)(xo 

X D, h))u IIH(xo) 6(m,H( o)(U) )2 

where a > 0 is a constant independent of xo, and 

(3.2) (l, (u))2 -h2QZ B Dq u I(u 
j=1 
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and such that there is a constant C3 > 0, independent of xo , for which 

(3.3) C3I| U |2 < u UlHrO) _ C311 U IIr - 

The proof of Lemma 1 is based on Lemma 2 given by Kreiss [12]. 
LEMMA 2 (KREISS). Let f denote a family of m' X m' matrices. Then the follow- 

ing statements are equivalent: 
(1 ) There is a constant Cl such that for all A E f 

(3.4) 1 A" _ Cj, v-= 1, 2,* 

(2) There is a constant C2, such that for all complex s, I s I < 1, (sA - I)- 
exists and 

(3.5) 1 (sA - ')-' _ C2/(1 8 Is). 

(3) There is a constant C3 > 0 and to every A E f a positive definite hermilian 
matrix H with 

(3.6) C3'1I < ftI _ C3I,3 

such that 

A*HA < (1- p)ft, 2p = min (1- Kj) 

(3.7) j 

Kj = the jth eigenvalues of A. 

Here fH = U*S*DSU, where U is any unitary matrix which transforms A into upper 
diagonal form, S is a matrix the elements of which are rational functions of the ele- 
ments of U*A U and U*A * U and D is a diagonal matrix independent of A. 

Lemma 2 is a slight modification of the original lemma due to Kreiss. In [12] he 
only proved that A*HA ? ft. T,he modification of the proof is, however, a trivial 
one. 

To prove Lemma 1 we first show that the second statement in Lemma 2 holds for 
+(O) (xo , ). As before we only have to consider a small neighborhood of O = .' 

The assumptions on the eigenvalues oy of et imply that there is, for every e > O,, 
a nonsingular matrix S such that 

Y2I 

SQ(o)s-l = apPI 

Cp?1 ~ p+ 

3A _ B means that y*A4y _ y*By for all vectors y. 
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where 

IY++i'l l 

CP+i = + tP+i'I < 1 

YP+i' I 

Taking into account that Q') = ?(I I") it follows that 

S(Q(0) + Q-(1)S'-l (0)-1 + O(j t 12mt). 

'Therefore by Gershgorii's estimate of the eigenvalues of a matrix we have 

I Ki - i I < const.J| 2m if I 'i= 1, -i 0.. 

J Ki)i' ? | - const. I 1 + E if _Ki, I < 1 , 

We can now write 

sS(Q-(0 + Q1))S -I 

SK1 + sql - 1 .q.2. . - . - - . - . - - . . . . . ' * - - - - - - - - - . . . . .Slm' 

Sq21 SK2 + Sq2 - 1 . . . . . . . . . . . . . . . . . . . . . . . . . .Sq2mP 

sqil * *SKi + sqi - 1 ?qi CE** Sqii?n + Eqi" * sqim' 

... .......................................... 

Sml .. . ....... ........... .SKm' + Sqm' - 1 + qm' E 

where m' =n(r + 1), qi' = qi - for i _ pn and I qi' I _ 1 qi"=O or l for i > pn. 
At this 

(3.8) qi I + lqik I const. ! J21, 

where because of the uniform bound for the coefficients of Q(1), the constant can be 
chosen independent of xo . Denote bv ck.z the elements of (sS(Q?' + Q(1) )'- If' 
and by Dkl the matrix obtained from sS(Q(? + Q(l))S - I by omitting the 
kth row and the lth column. Then by Cramer's rule: 

(3.9) =kl 
k 

(-1 k+ det Dzk/det(sS(Q(?) + Q-M))S-1 I). 

Observe that 
ml 

det(sS(Q(0) + Q'(1) )S-'-I) = II (SKi-1). 

Fromii (1.13) and the assumptions of Theorem 2 follows: 

SKi- | 1- SKi| >l I'M, i? pn,| s <1, 
(3.10)>pnI < (3.10) SKi - 1 > const., i > pn, s K 1, 

for suffieiently smalle > 0. We also know that 

(3.11) sKi- 1 >1- |s. 
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Using elementary properties of a determinant we obtain from (3.9) 

Ck = (-1 )1+l det Elk/(SK: - 1 ), 

where we construct Elk by dividing the ith row of sS(Q0() + Q(l) )S - I by SKi - 1,. 
respectively, and finally omitting the lth row and the kth column. Now use (3.8), 
(3.10) and (3.11). This easily shows that 

cA. I < const./(1- s 

with the constant chosen independent of x0 and t. Using Lemma 2 we obtain 

(Q(O) + Q )(xoI 0)Y' I < Ci, v = 1,2, 

or from (3.6), (3.7) and (1.13): 

( (Q(O) + M(1)(x )) *t( xo ) ( () + Q'W(1) (xo ) 
(3.12) 

< fI(xo, t)(1 - 61/21 I2) 

and 

(3.13) C3-'1 12(xo, <) ? C31, 

where C3 > 0 is a constant independent of xo and fl(xo, t) is a positive definite 
hermitian matrix. Because of the fact that the matrix l1T in Lemma 2 can be chosen 
as a piecewise continuous matrix-valued function of the elements of Q(O) + Q it 
follows from Lemma 2 that we are able to construct an operator H(xo) by 

(3.14) H(xo)u(x) = (27rY812 f H(xo, )et' X(X) da> 

where 

u(co)= (27rX)/2 L etw'xu(x) dx. 

We now define the new norm by 

(3.15) HI u O IH(xo) = (u, H(xo)U)r . 

Using Parseval's relation and (3.13) we obtain (3.3). Observe that 

(3.16) (Lq,H(xo) (U)) = f (2 sin j/2 u)t (co w) dA, 

and that 

(3.17) i> | 2 sin j,/2f. 

(3.1) is now established using Parseval's relation, (3.12) and (3.17). 

4. Some Lemmas. Here we collect some lemmas, which we need in Section .5. 
LEm MA 3. There exists a function ?(x) E C (RR) such that,4 the support of 4(x)' 

is contained in the cube defined by max, I xv I < 1, cp(x) > 0 and 

(4.1) 1= g42(x -), 
U 

4By C'(R8) we denote the set of all functions defined in R., whose partial derivatives of 
all orders exist. 
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where g runs through all points g - (gi, * * *, g,) with integral coordinates. 
Proof. H6rmander [8] showed that there exists a non-negative function 0(x) E 

C'(R,) with support contained in the cube max, I xv < 1 such that @(x) ? 0 
and 

1 Z E0@(x - g). 
U 

Theni 

+(x) = o(x)/ l/E2(x -g) 

is easily seen to have the required properties. 
For a given e > 0 and any u(x) E Sr now define: 

(4.2) ug(x) - 4((x - Eg)/E)u(x). 

Observe that at most 28 vector-valued functions ug can be different from 0 at any 
point x E R, . 

LEMMA 4. Let 

(4.3) (u, Hv) = E (ug, H(Xg)Vg)r? u, v Sr Xg = Eg 

where ug and vg are defined by (4.2) and H(xg)vg is defined by (3.14). Then (u, Hv) is 
an inner product defining an equivalent norm which satisfies 

(4.4) C3'!11 U llr2 ?< (u, Hu) < C31l u llr2 

where C3 is the constant in (3.3). 
Proof. (u, Hv) is easily seen to be an inner product. (4.4) follows from (3.3) 

anid (4.1). 
LEMMA 5. Let p and q, p _ q, be positive integers. Then 

L p,H(xg) (U) _ 2"- Lq H(xg) (u8) 

Proof. The inequality follows from: 

((hD+j(h))'u, H(xg)(hD+j(h))'u)r = L t*ft(x )u(2 sin j/2)2P dw 

f 4 u ()2 sin tj/2 )q dw 

4p-q( (hD+j(h) )qU, H(xg) (hD+j(h) ) ,8)r 

LEMMA 6. For any El > 0 there exists a constant C(El) such that if p > q: 

h2)2(LqI(x,g)(u) )2 < iE(Lp, (xg)(u) )2 + C(El)h2P(Lo,H(xg)(u) )2. 

Proof. The lemma follows from the followinig elementary inequality: 

h2p2q(2 sin (X/2)2q < el(2 sin tj/2)2p + C(e,)h2p. 

Observing that the difference operators commute with H(xg) we establish the 
following lemma at once. 
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LEMMA 7. 

(U,I H(xg)A (hDoj(h)v))r-= -(hDoj(h)u, H(xg)Av)r 

- h/2(Ej-'u, H(xg)(Ej-e18A/axj)v)r 

- h/2(Eju, H(xg)(EP2aA/a8x,)v)r, 

(u, H(xg)AhD+j(h)v)T = - (hD_j(h)u, H(xg)Av )r 

- (Ej-'tu, H(xg)(Ee38A/axj,)v)rh, 

where 0 < 01, 02 02 3 < 1, A(x) is a sufficiently smooth matrix and Elu(x) - 

u(x + hej). 
LEMMA 8. Let (hD)P denote the product of p operators hD, where each hD stands 

for one of the operators hDoj, hD+y or hD-j. Then 

Lo,H(xg)((hD)Pu) < Lp?H($T)(U). 

Proof. 

(Lo,H(,,) ((hD)) Pu) f ti*f(xe) u (max(2 sin tj/2) )2P dc 

f *ftXgu(x)A(2 sin {j/2)2p dW = (Lp,H(xg) (u))2 

LEMMA 9. Let (hD)p be defined as in Lemma 8. Denote by (hD)p the operator 
constructed by exchanging hD+j for hD-j and hD-j for hD+j in (hD)P. Let A (x) be a 
sufficiently smooth matrix such that the derivatives of order < pi < m of the elements of 
A (x) are uniformly bounded. For any C2> 0 there exists a constant C(e2) independent 
of h, 9, u and v such that 

hM-P1 (u, H(xg)A(hD)Pl(hD)rvX - (-1)P1 ((h7D)P'u, H(xg)A(hD)mv)) I 

-< C2( (Lm,H(xg) (u) )2 +-I (Lm,Hxg( V) )2) + C( E2)((Lo,H(xg)(u))2 + (LO,H(xV)(V) )2 )h2m. 

Proof. Using Lemma 7, Lemma 8 and Schwarz's inequality several times it is 
possible to show that 

(u, H(xg)A(hD)P'(hD)mv)r - (-1)P((hD) Piu, H(xg)A(hD)mv)r I 
< const. E hPl+m(P1+P2)LVl,H(xg) (u)L,2,H(xg) (V). 

P2 2m; v"<P 1 

We now use the elementary inequality 

ab < a2/2c + b 2c/2 

and Lemma 5 and Lemma 6 to finish the proof. 

5. Proof of Theorem 2. The proof is carried out in three steps. At this we use 
arguments analogous to those of H6rmander [8]. 

First consider: 

(Lo,H(Tg)(Ug) )2 - (Lo,H(Tg)( (Xg , D, h)ug) )2 

= (Lo,H(xg)(u))2 (Lo,H(zg)(( 
O + 0(1)(Xg , D, h))Ug))2 _ I-II-III 
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Here 
I = 2 Re( (00ug I H(Xg )(52) (Xg, D, h)ug)r I 

II = 2 Re(0(l' (xg , D, h)ug, IH(X )Q21 (Xg , D, h)ugo)r I 

III = (LO,H(Xg)(Q(2) (X , D, h)ug) )2* 

Now observe that from the uniform boundedness of (I - Q1(xg, D, h) ) ' follows,, 

(I,- Q(k')(xg, D, h))v lIo + 11 Q-i(xg I D, h)v - Q(')(xgXI D, h)v Ilo 

> 11 (I - Q (xg, D, h))v tlo _ const. 11 v Ilo. 

Using Lemma 5 we easily show that 

[I 
Q-l(xg, D, h)v - Q()(xg, D, h)v lIo < h const. 1j v lIo. 

This shows that (I - Q(1)(xg, D, h))-1 is a uniformly bounded operator if h is 
sufficiently small. Also observe that 

(I - Qi)-'(a,I + Q) -(I - 1Q(?1 Y'(a,J + Q21) 
= (I-Q ) (Q-1 - Q 1 Q '(11))-1(QxpI + Q,(&)) + (I- Q-'( 

Here 
Q - Q = Z B,GTho'(hD)T. 

a>O;r+a_ 2m 

Using Schwarz's inequality, Lemmas 5, 6, 8 and 9 we easily show that, 

(5.2) I I I + I II I + I III I _ 
f'k(Lo,H(X,7)(UO))2 

+ (S/2)(Lm H(xg)(Ug))2, 

where ' is a constant independent of g. Combine (5.1 ) and (5.2) and use Lemma 1: 

(5 3) (Lo,H(xg) (Ug) )2 - (Lo,H(xg) ( (xg I D, h)ug) )2 

> I -' 
lk(Lo,H(xg) (ug) )2 + (BI/2) (Lm,H(xg) (U) )2. 

Now consider: 

(Lo .f(xg) (ug) )2 - (Lo,H(Zx) (5(x D, h)ug) )2 

- (LO,H(xg)(ug))2- (Lo,H(xg)(Q(xg, D) h)ug)2 + IV + V + VI. 
Here 

IV = 2 Re(Q(0)ug, H(xg)((Q(xg I D, h) - Q(x, D, h))ug)r, 

V = 2 Re((Q(1)(xg , D, h) + ,(2)(Xg I D, h))ug , H(xg)(Q(xg I D, h) - Q(x, D, h))ug)r , 

VI = -(LO,H(xg)((Q(Xl D, h) - O(xg I D, h))Ug))2. 

Now choose e in (4.2) sufficiently small. We can then. estimate IV using Lemma 9, 
Schwarz's inequality, Lemmas 5, 6 and 8 obtaining: 

IV I < 3" k(Lo,H(xg) (ug ))2 + (5/ 12) (Lrn H(xg) (Ug) )2. 

It is easy to establish the same type of estimates for V and VI. Thus, using (5.3) 

(Lo,H(X,,) (U) )2 _(LO,H(xg)(Q(X, D, h)ug) )2 
? (a/4) (Lm,H(xg)(Ug))2 + ..k(Lo n(X)(Ug))2. 
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Finally consider: 

(u, Hu) - (O(x, D, h)u, HO(x, D, h)u) 

= (ugX H(xg)ug)- ((O(x, D, h)u)g, H(xg)(O(x, D, h)u)g)r 

-= (ug , H(x,)ug), - (O(x, D, h)u8, H(xg)O(x, D, h)ug), - VII - VIII. 

Here 

VII = 2Re Ej (Q(x, D, h)ug, H(xg)(O(x, D, h)u)g - Q(x, D, h)ug)r, 
U 

VIII = Z (LO,H(Z,)((Q(X, D, h)u)g - c(x, D, h)ug))2. 

Because of the fact that all derivatives of ?(x) are uniformly bounded we easily 
show that, 

(8(x, D, h)u)g - O(x, D, h)ug = h? C7, ,g(x)hT(hD)Yu, 

where the elements of Ct,,,g(x) have sufficiently many uniformly bounded deriva- 
tives. Observe that there exists a constant N(h), decreasing with decreasing h, so 
that no more than N(h) of the matrices C,,,0g(x) are different from 0 at any point 
x E R. . Using this, (5.4), and the same type of arguments as above we are now able 
to establish that 

(u, Hu) - (Q(x, D, h)u, HQ(x, D, h)u) 2 #Ivk(u, Hu). 

This proves Theorem 2. 
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